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Abstract. The analysis of renormalisation group equations for  the 9-state Potts model in 
two dimensions is generalised to  include the presence of a surface field H, besides the 
bulk one, H,. Combined with conformal invariance results, this allows prediction of a 
surface susceptibility behaviour a 2 . f / a H S  J H , -  L-”’(l  - c ’ ln  I C ) ’ ~ ’ ’ ~  for a 9 = 4  system of 
size L at the critical temperature.  

This prediction is checked by a Monte Carlo based finite-size scaling analysis, which 
also nicely reproduces the exact a n d  conjectured magnetic surface exponents for 9 = 2 and  
3, respectively. For the Baxter-Wu model similar methods give results consistent with the 
9 = 4 behakiour without logarithmic corrections ( e ’  = 0). 

1. Introduction 

Surface critical phenomena received considerable attention in the recent literature 
(Binder 1983). For two-dimensional systems the ‘surface’ is one-dimensional (e.g. the 
linear boundary of a semi-infinite system) and the only surface critical phenomena 
occurring are those associated with the ordinary transition, i.e. in a magnetic context, 
with the simultaneous ordering of bulk and surface spins below the bulk critical 
temperature. 

All the exponents of boundary quantities, for example, the surface magnetisation, 
are known once given the scaling dimension y h  according to which the surface ordering 
field H, has to scale in the homogeneous singular surface free energy near criticality$. 

For the two-dimensional Ising model the exponent y h  is known to be 4 on the 
basis of exact calculations (McCoy and Wu 1967). For the q-state Potts model, which 
is a non-trivial generalisation of the lsing case ( q  = 21, y h  remained essentially unknown 
until the assumption of conformal invariance at criticality allowed most recently to 
conjecture both bulk (Belavin et a1 1984a, b, Friedan et a1 1984) and surface exponents 
(Cardy 1984). 

For bulk critical properties of the two-dimensional q-state Potts model a large 
amount of exact or conjectured results were already available before the most recent 
developments based on conformal invariance. This body of knowledge was indeed 
very important for the correct application and confirmation of conformal invariance 
results. With respect to surface critical properties, the conformal invariance approach 

§ Differences of the exchange coupling at the surface with respect to the bulk one  can be shown to  be always 
irrelevant with scaling dimension y >  = -1 1 Burkhardt and  Cardy 1986). 
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played a more autonomous and important role, since it allowed to conjecture for the 
first time the values of surface exponents of Potts as well as of other types of 
two-dimensional systems (Cardy 1984). 

First attempts to verify numerically these predictions for the Potts model were made 
by Droz et a1 (1989,  von Gehlen and Rittenberg (1986), and von Gehlen et a1 (1986), 
with transfer matrix based finite-size scaling calculations. 

In  the case of the q = 3 Potts model these calculations essentially confirmed the 
value of y L  predicted on the basis of conformal invariance. For the q =4 model the 
situation appeared very different, with more poorly convergent results, which at first 
sight could indicate a possible disagreement with conformal invariance. 

In the case of the q = 4 Potts model a major difficulty for extracting numerically 
the correct bulk exponents is well known to be the presence of logarithmic corrections. 
Such corrections, which originate from the existence of a marginal scaling field in the 
renormalisation group ( RG) equations for the model (Nauenberg and  Scalapino 1980, 
Cardy et a1 1980), must be taken into account in order to extract bulk exponents with 
a satisfactory degree of accuracy from finite-size scaling data (Blote and  Nightingale 
1982). 

In 5 3 of this paper we present an extension, including the surface magnetic field, 
of the previous bulk RG equations analysis (Cardy et a1 1980) for the Potts model 
around q = 4. Combined with suitable information from conformal invariance, to be 
summarised in § 2, the new analysis allows us to predict the precise form of logarithmic 
corrections for quantities such as the boundary susceptibility of a finite system at 
criticality which is actually obtained by our numerical test calculations presented in § 4. 

Such calculations, based on Monte Carlo methods, are a first successful step towards 
an  accurate numerical test of y;t for the q = 4 Potts model. Similar calculations have 
been carried out here for the Ising, q = 3 Potts, and Baxter-Wu models in two 
dimensions, as well. 

Section 5 is devoted to some concluding remarks and to the discussion of further 
consequences of the results of Q 3. 

2. Magnetic surface exponent and conformal invariance 

In order to formulate a scaling theory of both bulk and  surface critical phenomena in 
the q-state Potts model, let us consider, for later convenience, the free energy per spin 
of a finite square system of side L. For the singular part of this free energy near 
criticality and  at large L we expect 

f (4, h, h,, 1/ L )  = l-df (P4, 1 ' ~  h, PLh,, I /  L )  (2.1) 

where d is the dimensionality of the lattice ( 2  in our case) and 1 is a rescaling factor. 
4 and h are the temperature and magnetic bulk scaling fields, respectively. Near 
criticality 4 and h will be proportional to K - K ,  and HB, respectively, K being the 
nearest-neighbour reduced bulk coupling with critical value K ,  and HB a symmetry- 
breaking field, also acting in the bulk. The surface scaling field h, depends on both 
bulk and  surface couplings and is proportional to the symmetry-breaking fields H,, 
acting on the surface spins only. 

The exponent y, and y H  are the familiar bulk temperature and magnetic exponents, 
respectively; y L is the surface magnetic exponent. Irrelevant bulk and surface scaling 
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fields are not included in equation (2.1), as they d o  not affect the dominant singular 
behaviour. The quantity 1/ L plays the role of scaling field with scaling dimension y = 1. 

In the limit of L going to infinity the free energy in equation (2.1) will split into a 
bulk part, fB, and a surface part, fs, according to 

f B  depends only on the bulk scaling fields, whereas fs depends on both bulk and surface 
scaling fields. An equation similar to (2.2) is also satisfied by the regular part of the 
free energy per site. Because of the assumed regularity, equation (2.2) in this case 
implies that, for example, a derivative of this function with respect to both HB and 
H s  should simply go to zero as 1 / L  in the thermodynamic limit. 

This property of the regular contribution to the boundary susceptibility of the finite 
system will turn out to be very important for our numerical investigation of the four-state 
Potts model in § 4. 

Within the field theoretic approach to second-order phase transitions, the principle 
of conformal invariance has proved extremely powerful as far as two-dimensional 
systems are concerned (Belavin et al 1984a, b, Friedan et al  1984). Critical exponents 
within various universality classes appear to be determined in terms of a single 
dimensionless number, c, the central charge of the Virasoro algebra (Virasoro 1970), 
or conformal anomaly. When the value of this charge is less than one, reflection 
positivity (unitarity) further constrains the values of c to be quantised (Friedan er a /  
1984) according to 

m = 3 , 4 , .  . . . 6 
m(m + 1) 

c = l -  (2.3) 

The critical q-state Potts model has been shown to correspond to m = 3 for q = 2 
( k i n g ) ,  m = 5 for q = 3 and m = cc for q = 4 (Kadanoff 1984, Dotsenko and Fateev 
1985). Introducing the scaling dimensions x = d - y = 2 - y and x‘ = d - 1 - y ’  = 1 - y ’  
for bulk and  surface operators, respectively, on the basis of a formula due to Kac 
(1979) one derives (Cardy 1984) 

xT = ( m +  3)/2m ( 2 . 4 ~ )  

xH = ( m  + 3 ) ( m  - 1)/8m(m + 1 )  (2.46) 

x h  = ( m  - l ) / ( m +  1). ( 2 . 4 ~ )  

For example, ( 2 . 4 ~ )  yields y h  = i, $ and 0 for the q = 2, 3 and 4 Potts models, respec- 
tively. For m odd between 5 and w, formulae (2.4) apply to unitary Potts models with 
non-integer q, given by (Kadanoff 1984, Cardy 1986) 

(2.5 1 

The values of q given by equation (2.5) accumulate at q = 4. Equations (2.4a), (2.46) 
and ( 2 . 5 )  are consistent with the den Nijs (1979) conjecture for yT and  with a similar 
conjecture for y H  (Nienhuis et a1 1980, Pearson 1980). Since equations (2.4) are also 
consistent with 

x;l = 4x,/x, (2.6) 
i t  is reasonable to conjecture that this last relation can be used to infer the q dependence 
of x;l by substituting the q-dependent expressions of x H  and xT resulting from the 

d q  = 2  c o s ( r / ( m  + 1 ) ) .  
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above-mentioned conjectures. This should be most plausible in the neighbourhood of 
q = 4, where the points of equation (2.5) accumulate. To leading order in e = q - qc, 
we have in particular (Nienhuis et a1 1980, Pearson 1980) 

yH =$-  ( 1 / 1 6 ~ ) ( - ~ ) ” ’ + 0 ( - ~ )  & < O  (2.7) 

and (den Nijs 1979) 

y r  = $ -  ( 3 / 4 ~ ) ( - ~ ) ~ ” + 0 ( - ~ ) .  (2.8) 

Using (2.6) this gives 

y L  = ( l / T ) ( - & ) 1 ’ 2 + o ( - & ) .  (2.9) 

This result will be crucial for the analysis to be carried out in the next section. 
We should like to make one further remark here. If we extend the Potts model to 

a Potts lattice gas, the system for q < 4 possesses both a critical and a tricritical point, 
which coalesce at q = 4 (Nienhuis et a1 1979). 

In  conformal theory, tricritical points are described by central charges with m even, 
which modifies the relations (2.4) but not (2.6) (Friedan et a1 1984). Using appropriate 
conjectures for the tricritical y ,  and yH (Nienhuis et a1 1979) we thus find 

y h  = - ( l /*)(-e)1’2+o(-&).  (2.10) 

While for the critical points of the Potts model the surface field is relevant and marginal 
for q = 4 it is irrelevant for the tricritical points. 

Finally, it is rather natural to use the relation (2.6) for all q and thus to make a 
conjecture for the surface magnetic exponent for arbitrary q. In  terms of the usual 
Potts variable U which is 

U = (2 /T)  cos-I J q / 2  (2.11) 

we have the very simple conjecture 

y;,  = U. (2.12) 

This implies for percolation ( q  + l ) ,  y;1= $. This result, which was also found by Cardy 
(1984), is in agreement with an approximate calculation based on series expansion 
methods (De Bell and Essam 1980). It is interesting because percolation is a non-unitary 
theory and so far conformal invariance has given few results for such theories. The 
result yA= is now being verified with Monte Carlo calculations; the results will be 
published elsewhere. 

3. Scaling theory of bulk and surface properties at the q = 4  Potts multicritical point 

The scaling formulation discussed at the beginning of the previous section should in 
general be sufficient for setting up a successful finite-size scaling strategy for determining 
y h .  As we will see in the next section, the strategy we follow here amounts to computing 
the boundary susceptibility 

I X B S  = 
a H S  a H B  H ~ = H B = O ,  K = K ,  

(3.1) 
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for systems of different sizes L at the bulk critical temperature. On the basis of equation 
(2.1) and the assumed properties of the scaling fields, one expects 

X B S  - L" (3.2) 
L - X  

with 

X = -d  + y ,  + y h .  (3.3) 

For the two-dimensional nearest-neighbour q-state Potts model K ,  = In( 1 Sdq) is 
known from self-duality, so the problem of determining y L  essentially reduces to 
fitting, with the power law behaviour (3.2), a sufficiently asymptotic set of determina- 
tions of x B S .  

Previous experience with the bulk scaling properties of the four-state Potts model, 
however, lets us suspect that in this case, to reach a sufficient degree of asymptoticity 
for the above fit can be practically impossible due to the possible presence of logarithmic 
corrections to the power law behaviour (3.2). 

The analysis to be carried out below will, in particular, allow us to predict the form 
of the logarithmic corrections for the boundary susceptibility of a q = 4 finite system 
at criticality, thus opening the way to the numerical determination of y h ,  to be discussed 
in the next section. 

Logarithmic corrections of the bulk critical behaviour of the q = 4 Potts model can 
be explained in terms of the presence of a marginal scaling field in the renormalisation 
group equations for the model (Nauenberg and Scalapino 1980, Cardy et al 1980). It 
is known that such marginal fields can lead to logarithmic corrections as well as to 
essential singularities (Wegner 1976). For the q = 4 Potts model the marginal field, 
called the dilution field, is related to the chemical potential of vacancies in the lattice 
gas generalisation of the model, originally considered within the RG context by Nienhuis 
et a1 (1979). 

Here we want to generalise the work of Cardy et a1 (1980) to the presence of a 
surface scaling field, namely the h,  already introduced in § 2. 

Indicating by + the dilution field, the RG equations we obtain in the neighbourhood 
of q = q, = 4 have the form 

( 3 . 4 ~ )  d 4 l d x  = ( y ,  + W ) 4  

(3.46) 

d + / d x = a ( + * + E )  (3.4c) 

dh,/dx = e$hs (3.4d) 

d L / d x  = - L  (3.4e) 

to leading order in E.  

The first three equations are the same as those already obtained by Cardy er a1 
(1980), who showed that the constants a, 6 and c are universal and equal to 1/ 7, 3 / 4 7  
and 11167, respectively, on the basis of exact or conjectured results for the q-state 
Potts model. y ,  and y ,  are the q = 4 bulk exponents, equal to respectively, 
and  x denotes the logarithm of the RG rescaling 1. 

The form of equations (3.4a)-(3.4c) follows from the assumption of analyticity in 
q and from other general projecties of the RC transformation, which are expected to 
be valid also on the basis of experience with approximate treatments. 

and  
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The real space renormalisation group approach to surface critical phenomena 
(Burkhardt and  Eisenriegler 1977) has shown that surface couplings cannot affect the 
transformation laws of bulk couplings. Once we assume the existence of a symmetry- 
breaking surface scaling field at the surface, equation ( 3 . 4 d )  is the only possibility for 
its evolution compatible with the symmetries and the general rules reviewed by Cardy 
et a1 (1980). 

We still have to determine e. This can be done on the basis of the results of § 2. 
The fixed points of (3.4) are 4 = h = h , =  0 and + * ( e )  = * ( - e ) ” * ( q  qc).  Working out 
the linearisation of the transformation (3.4) at the fixed point, we obtain a surface 
magnetic exponent y h  = * e (  - E ) ” * ,  where the positive and negative signs apply to 
critical and  tricritical fixed points, respectively. Identification with (2.9) and  (2.10) 
immediately gives e = 1/ T. 

With inclusion of the marginal dilution field +, equation (2.1) now becomes 

f(d(o), +(o), h ( o ) ,  h,(o),  L) = e - “ ‘ f ( d ( x ) ,  +(XL h ( x ) ,  h , ( x ) ,  Le- ‘ )  (3.5) 

where the fields on the R H S  can be obtained by simple integration of (3.4). More 
explicitly, putting e‘ = L and 

z = [ ~ - ( $ ( O ) / . l r ) l n  L1-I (3.6) 

for q = 4 we find 

f(4(0),  h(Oi ,  h,(O), L )  

= L - ~ ~ ( L + z ~ / ~ ~ ( o ) ,  z+(o), L’+fZi /16h(O),  z - I~ , (o ) ,  I ) .  (3 .7 )  

The surface susceptibility given by equation (3.1) will thus behave as 

A (Z* (0) 1 (3.8) X S B ( ~ )  % ~ - 1 ’ 8 z - 1 5 ’ l h  

where A( t )  =f(O, t ,  0, 0, 1) is analytic. 
The leading behaviour is thus 

,yBs(L) 1 L-’ ‘[I - ( + ( o ) / T )  In L]” l 6  (3.9) 

where 4(0)  is the as yet unknown value of the dilution scaling field for the model 
under consideration, in our case the undiluted nearest-neighbour critical q = 4 Potts 
model. 

4. Numerical results for Potts and Baxter-Wu models 

As anticipated above, we follow here the strategy of computing ,yes for blocks of 
different sizes L, by the Monte Carlo technique. A transfer matrix calculation of the 
same quantity for infinite strips ( L  x E), would give the advantage of essentially exact 
calculations. 

Here, however, in view of the difficulties with the four-state Potts model, we prefer 
to give up some precision in the determinations of ,yes in favour of the possibility of 
testing sizes ( L  24), which are inaccessible by the transfer matrix approach. At the 
same time we try to reduce as much as possible the fluctuations by performing very 
long runs (up  to lo6 MC steps per spin). 
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We consider Potts models on square lattices with reduced Hamiltonians 

H = K C  6,,,,, 
( 1 1 )  

(4.1) 

where s, = 0, 1, .  . . , q and the sum is over nearest neighbours in a square L x L box A. 
It turns out to be convenient to choose periodic boundary conditions in one direction 
(this makes our blocks closer to the L x m strips considered in the transfer matrix 
approach). The sides perpendicular to the other direction are left as free boundaries, 
so the spins there properly constitute the surfaces 8'4 of our blocks. 

The boundary susceptibility is computed as 

For the Ising case ( q  = 2) we calculated (4.2) for L =6 ,  8, 10,. . . , 20, with runs of 
about 5 x IO5 MC steps per spin. In  this case verification of equation (3.2) is very 
straightforward, and a simple least-squares fit with a straight line for In ,yBs as a function 
of In L gives x = 0.38i~0.01 which is in excellent agreement with the exact result 

The situation is considerably less easy for the q = 3 case. We calculated ,yes for 
L = 4 , 6 , .  . . , 2 4  with runs of up to lo6 MC steps per spin. The slope x as determined 
by a simple fit turned out to be x=O.23*OO.O3. The value expected on the basis of 
conformal invariance is x = -2 + + f = 0.20. A more satisfactory agreement can be 
obtained by making use of a strategy of analysis of Monte Carlo data recently used 
with remarkable success in some problems concerning random fractals (Stella et all 
1986). The idea is to consider the various xBs(L) as approximate coefficients of a 
series. It is then possible to estimate the asymptotic behaviour of the coefficients by 
applying Pade approximants to compute the residue at r = 1 of the logarithmic derivative 
of 

~ = - 2 +  1.875+0.5=0.375. 

A t ) =  c x s s ( L ) r L  
L = Z , 4 ,  

which should be equal to 1 + x. This kind of analysis, which is typical of work with 
exact enumerations, is not too sensitive to fluctuations of individual data and yields 
reasonably consistent Pad6 tables for 1 + x. What we lose due to these fluctuations is 
rather well balanced by the possibility of testing a more asymptotic range of L than 
allowed by exact calculations. 

On the basis of the Pad6 analysis we could estimate x = 0.21 i 0.01. This is a rather 
nice confirmation of the predictions of conformal invariance for q = 3. For the q = 4 
Potts model, previous attempts to verify y h  = 0 and thus x = -0.125 without taking 
into account logarithmic corrections have failed. Droz et a1 (1985) found y h  - 0.23. 
Von Gehlen et a1 (1986), working with a quantum version of the Potts model in d = 1, 
found y h  = 0.12. An approximate real space calculation yielded y k  = 0.31 (Lipowski 
1982). If we simply try to fit our data, which are for L = 4 , 6 , 8 , .  . . , 2 4  with up to 
lo6 MC steps per spin, by (3.21, we find x-0.11. Finite-size data thus seem to indicate 
an increase of x s s  with L, whereas the expected value of x is -0.125. A Pad6 analysis 
of the same data gives a considerably lower value for x ( x  - 0), but there is still no 
indication of a x approaching zero for L -+ m. According to our discussion in § 2 this 
failure has not to be put down to the survival of some regular contribution to xss, 
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since we know that this contribution goes to zero rapidly as 1/L. The effect is clearly 
due to the logarithmic correction reported in equation (3.9)f. 

To fit our data on the basis of equation (3.9) we need an estimate of 4(0).  To this 
end we performed independent calculations of the specific heat of our finite systems 
at criticality. For this specific heat one can indeed predict (Nauenberg and Scalapino 
1980) 

C ( L ) = L [ I  - ( + ( o ) / T )  In L ] - ~ / ~ .  (4.3) 

A simple logarithmic plot of C ( L )  gives an exponent C Y / V = ?  instead of the correct 
value a/ v = 1, as implied by equation (4.3), a problem similar to the one we have for 
x S s .  We obtained an estimate CL(0)- -1.59 by plotting ( C ( L ) / L ) - 2 ’ 3  as a function of 
In L. Using this value of $(O) we plotted In(x(BLs)L1’’) as a function of In[l - 
( + ( O ) / T )  In L ]  and found a slope = 1.02, whereas the theoretical slope should be 
;2 - 0.9375. 

A more direct test of y h  comes from our Pad6 estimate of x for the series of 
coefficients x(BLs)/[ 1 - ( + ( O ) /  T )  In L]I5’I6. In this case we estimate x = -0.13 * 0.02, 
which is in good qualitative agreement with the conformal invariance prediction 

We also performed finite-size scaling calculations for the Baxter-Wu model (Baxter 
and Wu 1973) which, as far as bulk properties are concerned, is known to be in the 
same universality class as the q = 4 Potts model but with G(0) = 0 in the scheme outlined 
above. For this model, e.g., there are no logarithmic corrections for the specific heat, 
so we should be able to fit directly the behaviour ,y(BLs)-- L-’”. This indeed seems to 
be the case, since preliminary finite-size data for L = 4,6,  . . . , 2 4  allowed a Pad6 estimate 
x = -0.15*0.05, which is qualitatively consistent with our expectance. 

_ -  

X =  -0.125. 

5. Concluding remarks 

In this paper we have shown how an extension of the analysis of RG equations for the 
q-state Potts lattice gas near q = qc = 4 allows us to determine precisely the form of 
logarithmic corrections to the scaling behaviour of quantities involving response to 
the surface scaling field H,. The boundary susceptibility, xBS, has the nice feature of 
possessing regular contributions which go to zero as 1 / L  for L+cc. This highly 
simplifies the task of numerically determining y &  for q = 4. An important ingredient, 
which is at the basis of the success of our numerical tests, is the somewhat unconven- 
tional Pad6 analysis of the approximate MC results. 

Besides opening the way to the first successful verifications of the predictions of 
conformal invariance for the surface properties of the q = 4 Potts model, the analysis 
of RG equations performed in 0 3 allows us to make at least one other interesting 
prediction, which should hopefully be confirmed by exact calculations. 

We know that for the Potts model with q > 4 the transition is of first order, with a 
latent heat L - exp( - 7r2/2de) having an essential singularity in E for e + 0 + (Baxter 
1973). Knowledge of this result indeed allows us to put a = l / n  in the bulk scaling 
field equation ( 3 . 4 ~ )  (Nauenberg and Scalapino 1980). Following steps similar to those 

+ We notice also that the unlikely possibility of A ( 0 )  =0, which would modify (3 .9) ,  seems to be clearly 
ruled out, since in such a case the leading corrections would act in the sense of a more rapid apparent 
convergence to zero. 
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required to derive the latent heat result from equation (3.4), we can find how the 
discontinuity of the surface spontaneous magnetisation behaves for q 3 4. 

Considering directly the singular part h of the surface free energy for L = 00, we 
can write 

+(0 )=0+  a 
C(O)=O-  

where AM, is the discontinuity of the surface magnetisation at the transition point 
(notice that h s -  H s  for Hs+O). It is then immediate to rearrange (5.1) as 

I + = O +  

Evaluation of the elementary integral in ( 5 . 2 ) ,  together with the assumption that a 
discontinuity exists for the surface magnetisation for q > qc = 4 leads us to predict for 
a pure system ($ < 0), an essential singularity: 

AM, - +  exp( - . r r2 /d~) [1+O(~)1  (5.3) 
q - q c  

in which the coefficient in the exponential is ( . rr /a) (d - 1). This is to be compared 
with the discontinuity in the bulk magnetisation AM - exp(-.rr2/8d&), as found by 
Cardy et a1 (1980). 
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